面临海洋环境污染的威胁,加拿大建立了以海洋环境治理法律为基础、以海洋执法为手段、以预防性和可持续发展为原则的海洋生态安全治理模式。
严控渤海围填海、推进长江沿江生态岸线改造、治理黑臭水体……7月中旬,生态环境部召开例行新闻发布会,介绍了我国水污染防治的多项举措和计划。
作为全球性的重大课题,水污染防治被许多国家视为生态环境保护的重要环节。在海洋污染、流域水环境污染、农业农村污水整治等方面,各国纷纷使出“狠招”,他们是怎么做的?
完善法律建立国家海洋保护区网络体系
加拿大是海洋大国,三面环海,海岸线长达24万公里,占世界各国海岸线总长的25%。进入20世纪中后期,随着工业化发展及沿海地区经济水平的提升,加拿大近海尤其是沿海经济发达地区部分海域,面临着海洋环境污染、近海环境与生态系统发生改变和恶化的威胁。
为此,加拿大建立了以海洋环境治理法律为基础、以海洋执法为手段、以预防性和可持续发展为原则的海洋生态安全治理模式,推动了加拿大海洋生态安全模式的发展,为国际海洋生态安全治理实践提供了借鉴。
首先,加拿大制定了详细的海洋发展战略。早在2002年,加拿大水产海洋管理机构就发布了《加拿大海洋战略》,完善了加拿大海洋渔业制度,将海洋可持续发展战略放于首要地位。后来,加拿大政府又进行了一系列部署,例如2005年的 《加拿大海洋行动计划》《联邦海洋保护区战略》,2007年的 《健康海洋引导计划》,2009年的《我们的海洋,我们的未来:联邦的计划和行动》等。
其次,健全海洋环境治理法律体系。加拿大的海洋立法有着悠久的历史。1868年和1869年,加拿大先后颁布了《渔业法》和《沿海渔业保护法》,保护海洋渔业资源。1988年,加拿大颁布了《环境保护法》,海洋环境保护也是其核心内容之一。1996年,加拿大颁布实施了世界上第一部综合性海洋法律《海洋法》,为海洋生态保护提供了根本性的法律依据。
在加拿大,渔业法律体系具有多门类、多层次、多形式的特点。从层次和形式来看,除宪法中关于渔业管理的内容,还有议会制定的法律、法令和渔业与海洋部长发布的具体条例、规章,以及省级权力机关颁布的补充性地方性法规。此外,加拿大还签署了一些与渔业有关的国际公约和渔业协定,与其他法律法规共同构成了有机联系、统一完整的加拿大渔业法律体系。
另外,加拿大还注重推动海洋保护区的建设与发展。1911年,不列颠哥伦比亚省建立了加拿大第一个海岸保护区——斯特克纳省立公园。1923年,第一个联邦级海洋保护区——维多利亚港候鸟禁猎区成立。1955年,加拿大建立了第一个真正意义上的海洋保护区——马奎纳海洋公园,标志着加拿大海洋保护区建设新时代的开始。1986年,加拿大联邦公园管理局批准了《国家海洋公园政策》,1994年修订为《国家海洋保全区政策》,并于2002年正式颁布《国家海洋保全区法》,目的在于保护海洋生物及其栖息地。
加拿大联邦公园管理局将加拿大三大沿海及大湖地区划分为29个“海洋区”,建立了具有代表性的国家海洋保护区网络体系。目前,加拿大联邦海洋保护区网络由三大核心计划组成:一是依据《海洋法》建立的海洋保护区,主要用来保护重要的鱼类与海洋哺乳动物栖息地、濒危海洋物种、生物多样性高的区域;二是海洋野生动物保护区,重点保护多种野生动物,包括迁徙鸟类与濒危物种; 三是国家海洋保育区,主要用来保护海洋自然与文化遗产。
模拟洪水威胁优化流域管理措施
在流域水环境治理方面,澳大利亚墨累-达令流域管治的经验值得借鉴。
墨累-达令流域是澳大利亚最大、唯一发育完整的水系,由墨累河及其数十条支流组成。达令河是其最大支流。水系流贯大陆东南部中央低地区,流域面积约105.7万平方千米,包括昆士兰州南部、维多利亚州北部和新南威尔士州大部地区。
如何进行流域水环境管理?澳大利亚的做法是签订协议,成立管理委员会。1884年,新南威尔士州、维多利亚州与南澳大利亚州签署了《墨累河河水管理协议》。这是澳大利亚历史上第一个分水协议,打破了此前墨累河完全由南澳大利亚州管理的格局。1917年,墨累河流域委员会成立,保证了分水协议的执行。1982年,在墨累-达令流域环境形势日益恶化的大背景下,《墨累-达令河水管理协议》签署,生态问题第一次被纳入协议内容。
经过一百多年的实践和探索,澳大利亚政府如今采取多个方面的措施,以保证流域环境的持续健康和工业、社区的平衡发展。
墨累河拥有永久性河流、支流和咸水湖泊和间歇或季节性湖泊等。水环境对墨累河及其湿地和泛滥平原的生态延续性起着至关重要的作用。
此前澳洲政府实施的调水工程对湿地原有的生态系统造成了破坏,改变了几千年来干湿自然调节的作用,导致水存储量减少了三分之二,多地频发干旱灾害。为此,政府采取了湿地计划,开展持续监测项目和流域湿地基础调查计划,倡导自然灌溉制度并实施湿地资源义务分配。
澳大利亚政府还实施了多项重大计划来恢复流域相关社区、湿地和河漫滩的活力。在计划运行过程中,及时信息反馈和先进科学研究手段的介入是流域恢复重大决策成功的关键。
其中,较为突出的包括河道及河漫滩综合基础设施项目。该计划持续进行了7年不间断投资,主要涉及派克和卡塔帕库地区流域的综合基础设施建设,意在更有效地管理流域河漫滩及其周围水体流量。当地通过模拟自然洪水对地区生态环境和社区生活的威胁,优化管理及改善措施,使这些地区恢复生态环境健康。同时,该项目促使流域居民更有效地利用水环境,并更好地管理盐碱地和地下水。在低潮期间,制定了严格的生态环境健康和流域活力恢复制度。
此外,科隆和下湖湿地恢复计划也颇受公众关注。过去一段时间里,墨累-达令流域的长时间干旱和水分过度分配的影响,使得科隆和湖泊亚历山大和阿尔伯特(下湖)湿地处于环境崩溃边缘。为恢复该地区的生态和生产价值,当地从栖息地和植被两方面着手,通过管理酸性硫酸盐土壤、收集和种植、设置栅栏保护土着遗产和控制害虫植物和动物等方式进行生态恢复。
农村生活污水经沉淀池净化后用于灌溉
在农业农村污水治理方面,“德国模式”能带来一定的启发。
上世纪90年代以前,德国农村污水采取工业化集中式处理办法,即将污水通过排水管道输送到一个污水处理厂集中处理。这样做除了成本很高以外,污水处理之后的大量沉淀物和废物还对环境造成压力。同时,富含营养物质的元素氮、磷、钾持续不断地流入排放水域,会造成水域富营养化和水生物、鱼类因缺氧而衰亡以及水和营养物质的自然循环过程被人工技术打断。进入21世纪以来,这种集中式处理办法正被分流式污水处理新办法所代替。
目前德国农村分流式污水处理的新办法主要包括:
分散市镇基础设施系统。德国海德堡市郊的诺伊罗特村2005年底率先建成该系统。人们在没有接入排水网的偏远农村建造先进的膜生物反应器,平时把雨水和污水分开收集,然后通过先进的膜生物反应器净化污水。这一系统不仅可以降低污水处理成本,还能在净化污水的过程中获得氮气,使污水变成“宝”,增强农村土地肥力。
PKA湿地污水处理系统。PKA湿地由介质层和湿地植物两大系统组成,利用这两大系统共同营造的生态系统,综合物理、化学、生物三种放大功效,可以使污水处理功效达到最大化。该工艺主要将农村生活污水通过水管道,汇集流入沉淀池,经过沉淀池的4层筛选之后,再经PKA湿地净化处理,然后达标排放或用于农田灌溉。该系统的运转不需要化学药剂,所有的材料都来源于大自然,对周边环境没有二次污染。湿地表面干燥,没有积水,构成景观绿地,日常运行费用低,管理方便。
多样性污水分类处理系统。德国吕贝克2000年采用多样性污水分类处理系统,将污水分为雨水、灰水和黑水。其中灰水指厨房、淋浴和洗衣等家政污水,黑水指经真空式马桶排放的厕所污水。居住区屋顶和硬质地面上的雨水被雨水管道收集,并汇入附近的地表水或者导入居住区内设置的渗水池。该渗水池属于小区的绿化设施,池底使用特殊材料如砾石等,使池中的雨水自然下渗并汇入地下水。在暴雨或降水量丰厚的情况下,还可以把多余的雨水导入相连的蓄水池,使雨水自然蒸发或通过沟渠汇入地表水。洗菜、洗碗、淋浴和洗衣等家政污水则作为灰水通过重力管道流入居住区内的植物净水设施进行净化处理。
来源:解放日报
来源:解放日报来源:解放日报来源:解放日报来源:解放日报
2018年4月初召开的中央财经委员会第一次会议明确提出,未来三年要打赢蓝天保卫战、打好柴油货车污染治理、城市黑臭水体治理、渤海综合治理、长江保护修复、水源地保护、农业农村污染治理等七大攻坚战。其中,后五项属于涉“水”攻坚战。
国务院发展研究中心资源与环境政策研究所副所长李佐军在接受经济观察报采访时表示:“这七大攻坚战是对打好污染防治攻坚战的具体落实,涉及的领域恰恰是过去多年以来大气、水、土壤污染治理的重点和难点所在。”
生态环境部水环境管理司司长张波介绍称,目前全国水污染防治已初步取得积极进展,水环境质量在持续改善。2017年全国地表水国控断面Ⅰ-Ⅲ类比例为67.9%,同比增加0.1个百分点;劣Ⅴ类比例为8.3%,同比减少0.3个百分点。“不过,形势依然严峻,水环境风险隐患突出,年度水质目标完成面临很大压力。”张波坦言,下一步要坚持山水林田湖草系统治理,加快水生态保护修复,重点打好五大“水战”。
圈定“水战”背后
在水污染防治攻坚战中,中央首选这五个领域重点进攻,释放的信号是:只要是与公众生活密切相关的重大水污染问题,都将被列为重点治理对象。
李佐军对经济观察报说,这五大涉“水”攻坚战,都是针对重点区域的污染整治,是亟待重点突破的薄弱环节。今后生态环境保护压力将持续加大,打攻坚战就是要选择重点的打,通过重点来带动全局。
李佐军说:“比如城市黑臭水体治理就是一个老大难问题,国家正是要通过对其整治,来倒逼城市环境基础设施建设,加快补齐这块短板,推动城市转型升级。”
在五大“水战”中,黑臭水体治理打头阵。今年5月初,生态环境部将联合住房城乡建设部开展黑臭水体专项整治行动,包括全国36个重点城市及其他部分地级市,同时将对广东、广西、海南等首批8省区市开展专项督查,9月、10月启动巡查,若仍对交办问题整改不力,将被纳入中央环保督察问责之列。
近年来,渤海生态环境综合治理日益为公众所关注。长期以来,由于其水体自净能力差,政府大规模填海造地、海洋资源过度开发、海水养殖规模较大等,已对渤海生态环境造成较大压力。
在本轮机构改革后,海洋环境治理职责已从国家海洋局移至生态环境部。据张波介绍,生态环境部将坚持陆海统筹,污染治理与生态保护共同推进,并会同有关部门和省市抓紧制定渤海综合治理攻坚战作战计划。
张波说:“具体而言,生态环境部将加大对入海排污口的排查整治力度,全面清理非法、不合理的入海排污口,同时对船舶、港口污染,垃圾转运处理设施建设等进行重点整治。”
水源地保护
被视为老百姓“水缸”的集中式饮用水水源地水体,更是位列水污染防治“四种水体”之首。
为此,生态环境部联合水利部已在全国启动了集中式饮用水水源地环境保护专项行动。确定的阶段目标是:2018年底前,全部完成长江经济带县级和其他地区地级及以上地表水型水源地清理整治;2019年底前,全部完成其他地区县级地表水型水源地清理整治。
据统计,列入此次专项行动范围的地表水型水源地达2466个,其中长江经济带县级水源地有1161个。从问题类型来看,包括工业企业在内的多种非法排污问题突出。
生态环境部水环境管理司司长张波对经济观察报说:“饮用水水源地保护最大的难点是历史和现实的问题相互交织,有些项目是历史形成的,甚至有文物价值和经济价值,但与水源地保护有一定冲突。”他认为,对于水源地,首先是保护优先,其次是统筹兼顾。
此前国家出台的《水污染防治行动计划》(简称“水十条”)和新修正的《水污染防治法》都对饮用水源保护提出明确要求。近日,河北、福建、山西、广西、甘肃、四川等多省已陆续启动专项行动,计划年内完成县级集中式饮用水水源地环保专项整治任务。
来源:经济观察网
2018年全国环境保护工作会议提出,加快水污染防治,全面落实《水十条》重点任务,对水环境问题突出和《水十条》落实滞后地区开展专项督导。当前,我国水污染治理坚持精准治水、科学治水,但精细治水还未引起足够重视。笔者结合德国考察了解到的经验,得出三方面精细治水的启示。
启示一,河流内源治理要精工细作。目前,在黑臭河治理及消除劣V类水体等工作中,有的地方对于要整治的河道,无论清淤还是截污控污,往往喜欢翻箱倒柜、做大手术,轰轰烈烈地把河道翻个底儿朝天。如此做法,或许让清淤或截污更彻底,但同样也会严重破坏河道内原有的或者仅存的动植物水生态系统,导致几年甚至几十年都难以恢复。德国在河道整治中始终遵循河流自然规律,河道治理前往往先对河流水生态系统进行充分调查后,才会对症施策。比如河道清淤,虽然德国人力成本很高,但他们依然尽量选择人工清淤,因为机械清淤会碾压损害河岸生态。而且,清淤时,他们通常拒绝彻底挖走底泥,尤其是水生动植物丰富的水域。如果清淤过于彻底,无疑会把这些水生动植物也清理出去,以至于等到河道整治完成了,这条河流的自净能力也消失殆尽。因此,德国人选择对半面河道实施清淤,过几年等已清淤的河床水生态系统恢复了,再对另一面河道清淤,如此一来,可确保河流生态系统总体保持稳定。
启示二,农业面源治理要精打细算。农业面源污染是我国地表径流的主要污染源之一,在德国也是如此,其农业面源污染贡献率占比超过六成。加强农业面源污染治理,我国采取了限制和压缩化肥、农药使用量,实施土地耕作轮休等做法,但在具体实施过程中不具体、实际操作性缺乏等问题依然较为突出。在德国,除了这些方法外,还实施了更多更具体细致且切实可行的治污措施。比如,为防治河流近岸污染,德国规定,沿岸5米范围内或者斜度超过20度岸坡不
得作为农田,冬季休耕期、雨天均不得开展施肥作业,防止化肥尚未被农作物吸收就已流失到周边河湖水体中。又如,化肥和农药管控到户,为每家农户量身定制施肥规划,按照统一供给的方式配送一定数量和种类的化肥、农药。德国鼓励农户使用绿色粪肥,但对粪肥的使用量、使用区域和使用时段也同样做出了明确规定。再如,为防止农户无序使用肥料,农业管理部门每年对农户土壤进行抽测,土壤超过营养化标准要求的,政府拒绝发放奖励金。鉴于此,笔者认为,农业面源污染是我国水环境治理主要矛盾之一,因此,应把更多精力投入到农业面源管理中,借鉴德国有关做法,研究和出台更多更有效的防治措施。
启示三,污水管网管理要滴水不漏。当前,各地都很重视环境基础设施建设,污水管网公里数每年都在持续增加,但已建管网管理缺失问题却逐渐凸显。据报道,某县级市对中心城区污水管网普查,竟发现万余个混接漏接点,以至于城镇污水处理厂COD指标进水浓度仅在100毫克/升左右。由此可见,大量生活污水已流入外环境,而混入污水管网的无疑是河水。德国对污水管网建设的管理体系相对成熟,建设时,要求管网材质的使用寿命必须达到80年以上。在管网日常运行中,他们坚持制度化维护管理,每个污水处理厂均配备若干污水管网管理员,管理员每天巡查管网各节点,查看干管是否存在明显异常。此外,他们还要定期通过技术手段,对干管和支管系统进行体检,发现跑冒滴漏现象立即采取措施,滴水不漏已是管网管理员的职责要求和工作标准。对此,笔者认为,污水管网不能重建轻管,不仅要实现污水管网建管统一,而且要将污水处理厂管理与污水管网检修运维相统一,将污水管网纳入污水处理厂管理范畴。建议参照德国做法,出台相关规定或技术规范,明确污水处理厂管网管理员配备数量、工作职责、考核内容等,切实把污水管网管起来,确保汇入管网的每滴污水都能流入污水处理厂的初沉池。
来源:中国环境报
十三届全国人大通过《中华人民共和国宪法修正案》,将生态文明历史性地写入《宪法》,从国之根本大法的高度对生态文明建设提出了要求。生态文明建设已经成为一个综合的系统工程,要求进行相应机构建设,落实相关的制度、机构和职能安排。
党的十九届三中全会颁布的《中共中央关于深化党和国家机构改革的决定》指出:“转变政府职能,优化政府机构设置和职能配置,是深化党和国家机构改革的重要任务。” 完善政府在生态环境保护方面的职能,优化环保机构设置,是政府机构改革的重要任务。此次组建自然资源部与生态环境部可谓相当及时,这主要体现在以下两个方面:
一是我国过去的生态环境保护体制、机制存在权责不明、多头执法、效率低下等问题。原来的资源保护职能按资源门类分散在发改委、国土、水利、农业、林业等部门,在污染防治领域,由于环保机构成立时间较晚,原先的管理职能分散在发改委、林业、农业等部门。即使在环保部成立后,原部门的环保职能加上解决新问题的各种行政授权,使得“以部为单位”甚至“以司为单位”的决策模式广泛存在,环境政策存在分散、重复,甚至冲突的局面。
组建自然资源部,将过去分散在发改委、住建部、水利部、农业部、国家林业局等部门的自然资源的调查和确权登记整合,统一行使用途管制和生态修复的职责,有利于对山水林田湖进行整体保护、系统修复和综合治理。组建生态环境部,统一负责生态环境监测和执法工作,监督管理污染防治、核与辐射安全。这从总体上提升了政府工作的行政效率和水平,也实现了管理权和执法权的有效分离:自然资源部统一行使全民所有自然资源资产管理者的职责,而生态环境部统一行使生态环境监测和执法职能,这就明确了两者的分工,对于进一步推动生态文明建设具有重要意义。
二是在此次机构改革之前,政府生态保护的职能未能明确体现在机构设置上,对明确权责存在一定阻碍。习近平同志多次指出“生态兴则文明兴,生态衰则文明衰”“好的生态环境是最公平的公共产品,是最普惠的民生福祉。”近年来,国家出台了一系列有关生态保护和补偿修复的文件,如《关于开展生态补偿试点工作的指导意见》《全国生态保护“十二五”规划》《生态保护红线划定指南》等。但是在过去的政府机构职能设置中,生态保护职能往往被包括在政府的公共服务职能中,并不单列。
此外,人们往往将“生态”与“环境”混为一谈,这客观上不利于生态文明建设。例如,在探索建立绿色GDP核算体系过程中,只将资源消耗和环境污染损失的因素纳入其中,而将生态因素混同于环境因素,或者将生态因素归入环境因素,致使生态效益、生态价值、生态补偿在该核算体系中未能得到应有的体现。
其实,党的十八大报告在谈及“生态文明制度建设”时,明确要求“要把资源消耗、环境损害、生态效益纳入经济社会发展评价体系”。2013年环保部颁布的《全国生态保护“十二五”规划》和2017年国务院出台的《生态保护红线划定指南》都体现了生态保护在建设生态文明中的重要性,然而在此次机构改革之前,这一重要性并未体现在政府机构名录上。
此次《深化党和国家机构改革方案》明确将生态环境保护和经济调节、市场监管、社会管理,以及公共服务一并列为政府职能,并在组建自然资源部和生态环境保护部中明确了资源、生态保护和环境保护的关系,将生态保护职能正式落实于政府机构职能设置上,对于贯彻十九大精神,全面推进生态文明建设具有重大意义。
来源:中国青年报
污水处理厂中的分析是一个很重要的运营手段,分析结果是污水调节的依据,所以分析的准确性要求很高,必须保证分析数值的准确才能保证系统的正常运行手段的正确合理!
1、化学需氧量(CODcr)的测定
化学需氧量:指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,单位为mg/L。而我国一般采用重铬酸钾法作为依据。
在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。
(1)回流装置:带250ml锥形瓶的全玻璃回流装置(如取样量在30ml以上,采用500ml锥形瓶的全玻璃回流装置)。
(2)加热装置:电热板或变组电炉。
(3)50ml酸式滴定剂。
(1)重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。
(2)试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。
(3)硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边搅拌便缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。
标定方法:准确吸收10.00ml重铬酸钾标准溶液与500ml锥形瓶中,加水稀释至110ml左右,缓慢加入30ml浓硫酸,混匀。冷却后,加入三滴试亚铁灵指示液(约0.15ml)用硫酸亚铁铵滴定,溶液的颜由黄色经蓝绿色至红褐色及为终点。
C[(NH4)2Fe(SO4)2]=0.2500×10.00/V
式中,c—硫酸亚铁铵标准溶液的浓度(mol/L);V—硫酸亚铁铵标准滴定溶液的用量(ml)。
(4)硫酸-硫酸银溶液:与2500ml浓硫酸中加入25g硫酸银。放置1-2d,不时摇动使其溶解(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。
(5)硫酸汞:结晶或粉末。
(1)使用0.4g硫酸汞络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸汞,是保持硫酸汞:氯离子=10:1(W/W)。如出现少量氯化汞沉淀,并不影响测定。
(2)水样去用体积可在10.00-50.00mL范围之间,但试剂用量及浓度按相应调整,也可得到满意结果。
(3)对于化学需氧量小于50mol/L的水样,应该为0.0250mol/L重铬酸钾标准溶液。回滴时用0.01/L硫酸亚铁铵标准溶液。
(4)水样加热回流后,溶液中重铬酸钾剩余量应为加入少量的1/5-4/5为宜。
(5)用邻笨二甲酸氢钾标准溶液检测试剂的质量和操作技术时,由于每克邻笨二甲酸氢钾的理论CODCr为1.167g,所以溶解0.4251L邻笨二甲酸氢钾与重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODCr标准溶液。用时新配。
(6)CODCr的测定结果应保留三位有效数字。
(7)每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其注意其浓度的变化。
(1)将取回的进水样、出水样摇匀。
(2)取3个磨口锥形瓶,编号0、1、2;向3个锥形瓶中分别加入6粒玻璃珠。
(3)向0号锥形瓶中加20mL蒸馏水(用胖度移液管);向1号锥形瓶中加5mL进水样(用5mL的移液管,要用进水润洗移液管3次),然后再加入15mL蒸馏水(用胖度移液管);向2号锥形瓶中加20mL出水样(用胖度移液管,要用进水润洗移液管3次)。
(4)向3个锥形瓶中分别加入10mL重铬酸钾非标液(用10mL的重铬酸钾非标液移液管,要用重铬酸钾非标液润洗移液管3次)。
(5)将锥形瓶分别放到电子万用炉上,然后打开自来水管将水充满冷凝管(自来不要开的过大,凭经验)。
(6)从冷凝管上部向3个锥形瓶中分别加30mL硫酸银(用25mL的小量筒),然后分别摇匀3个锥形瓶。
(7)插上电子万用炉插头,从沸腾开始计时,加热2小时。
(8)加热完毕后,拔下电子万用炉插头,冷却一段时间后(多长时间凭经验)。
(9)从冷凝管上部向3个锥形瓶中分别加90mL蒸馏水(加蒸馏水原因:1.从冷凝管上加水,使加热过程中冷凝管内壁的残留水样流入锥形瓶,减小误差。2.加定量的蒸馏水,使滴定过程中的显色反应更加明显)。
(10)加入蒸馏水后会放热,取下锥形瓶冷却。
(11)彻底冷却后,向3个锥形瓶中分别加3滴试亚铁灵指示剂,然后分别摇匀3个锥形瓶。
(12)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。(注意全自动滴定管的使用方法。滴定完一个要记得读数,并将自动滴定管液位升至最高处,进行下一个滴定)。
(13)记录读数,计算结果。
2、生化需氧量(BOD5)的测定
生活污水与工业废水中含有大量各类有机物。当其污染水域后,这些有机物在水体中分解时要消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化。水体因缺氧造成鱼类及其他水生生物的死亡。
水体中所含的有机物成分复杂,难以一一测定其成分。人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量,生化需氧量即属于这类的一个重要指标。
生化需氧量的经典测定方法,是稀释接种法。
测定生化需氧量的水样,采集时应充满并密封于瓶中。在0——4摄氏度下进行保存。一般应在6h内进行分析。若需要远距离转运。在任何情况下,贮存时间不应超过24h。
生化需氧量是指在规定条件下,微生物分解存在水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量。此生物氧化全过程进行的时间很长,如在20摄氏度下培养时,完成次过程需要100多天。目前国内外普遍规定于20加减1摄氏度培养5d,分别测定样品培养前后的溶解氧,二者之差即为BOD5值,以氧的毫克/升表示。
对某些地面水及大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以降低其浓度和保证有充足的溶解氧。稀释的程度应使培养中所消耗的溶解氧大于2mg/L,而剩余溶解氧在1mg/L以上。
为了保证水样稀释后有足够的溶解氧,稀释水通常要通入空气进行曝气,便稀释水中溶解氧接近饱和。稀释水中还应加入一定量的无机营养盐和缓冲物质,以保证微生物生长的需要。
对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD5时应进行接种,以引入能分解废水中有机物的微生物。当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种。 本方法适用于测定BOD5大于或等于2mg/L,最大不超过6000mg/L的水样。当水样BOD5大于6000mg/L,会因稀释带来一定的误差。
(1)恒温培养箱
(2)5——20L细口玻璃瓶。
(3)1000——2000ml量筒
(4)玻璃搅棒:棒的长度应比所用量筒高度长200mm。在棒的底端固定一个直径比量筒底小、并带有几个小孔的硬橡胶板。
(5)溶解氧瓶:250ml到300ml之间,带有磨口玻璃塞并具有供水封用的钟型口。
(6)虹吸管,供分取水样和添加稀释水用。
(1)磷酸盐缓冲溶液:将8.5磷酸二氢钾,21.75g磷酸氢二钾,33.4七水合磷酸氢二钠和1.7g氯化铵溶于水中,稀释至1000ml。此溶液的PH应为7.2
(2)硫酸镁溶液:将22.5g七水合硫酸镁溶于水中,稀释至1000ml。
(3)氯化钙溶液:将27.5无水氯化钙溶于水,稀释至1000ml。
(4)氯化铁溶液:将0.25g六水合氯化铁溶于水,稀释至1000ml。
(5)盐酸溶液 :将40ml盐酸溶于水,稀释至1000ml。
(6)氢氧化钠溶液 :将20g氢氧化钠溶于水,稀释至1000ml
(7)亚硫酸钠溶液:将1.575g亚硫酸钠溶于水,稀释至1000ml。此溶液不稳定,需每天配制。
(8)葡萄糖—谷氨酸标准溶液:将葡萄糖和谷氨酸在103摄氏度干燥1h后,各称取150ml溶于水中,转入1000ml容量瓶内并稀释至标线,混合均匀。此标准溶液临用前配制。
(9)稀释水:稀释水的PH值应为7.2,其BOD5应小于0.2ml/L。
(10)接种液:一般采用生活污水,在室温下放置一昼夜,取上清液使用。
(11)接种稀释水:分取适量接种液,加入稀释水中,混匀。每升稀释水中接种液加入量为生活污水1——10ml;或表层土壤侵出液20——30ml;接种稀释水的PH值应为7.2。BOD值以在0.3——1.0mg/L之间为宜。接种稀释水配制后应立即使用。
1、不经稀释直接培养的水样
BOD5(mg/L)=C1-C2
式中:C1——水样在培养前的溶解氧浓度(mg/L);
C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L)。
2、经稀释后培养的水样
BOD5(mg/L)=[(C1-C2)—(B1-B2)f1]∕f2
式中:C1——水样在培养前的溶解氧浓度(mg/L);
C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L);
B1——稀释水(或接种稀释水) 在培养前的溶解氧浓度 (mg/L);
B2——稀释水(或接种稀释水) 在培养后的溶解氧浓度 (mg/L);
f1 —— 稀释水(或接种稀释水)在培养液中所占比例;
f2 —— 水样在培养液中所占比例。
B1——稀释水在培养前的溶解氧;
B2——稀释水在培养后的溶解氧;
f1——稀释水在培养液中所占比例;
f2——水样在培养液中所占比例。
注:f1,f2的计算:例如培养液的稀释比为3%,即3份水样,97份稀释水,则f1=0.97,f2=0.03。
(1)水中有机物的生物氧化过程,可分为二个阶段。第一阶段为有机物中的碳和氢、氧化生成二氧化碳和水,此阶段称为碳化阶段。完成碳化阶段在20摄氏度大约需20天左右。第二阶段为含氮物质及部分氮,氧化为亚硝酸盐及硝酸盐,称为硝化阶段。完成硝化阶段在20摄氏度时需要约100天。因此,一般测定水样BOD5时,硝化作用很不现著或根本不发生硝化作用。但对于生物处理池的出水,因其中含有大量的硝化细菌。因此在测BOD5时也包括了部分含氮化物的需氧量。对于这样的水样,,可以加入硝化抑制剂,抑制硝化过程。为此目的,可在每升稀释水样中加入1ml浓度为500mg/L的丙烯基硫脲或一定量固定在氯化钠上的2-氯带-6-三氯甲基啶,使TCMP在稀释样品中的浓度大约为0。5 mg/L。
(2) 玻璃器皿应彻底清洗干净。先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水,蒸馏水洗净。
(3) 为检查稀释水和接种液的质量,以及化验人员的操作水平,可将20ml葡萄糖-谷氨酸标准溶液用接种稀释水稀释至1000ml,按测定BOD5的操作步骤。测得BOD5的值应在180—230mg/L之间。否则应检查接种液、稀释水的质量或操作技术是否存在问题。
(4) 水样稀释倍数超过100倍时,应预先在容量瓶中用水初步稀释后,再取适量进行最后稀释培养。
3、悬浮性固体物质(SS)的测定
悬浮固体表示水中不溶解的固体物质的量。
测定曲线内置,通过测定样品对特定波长的吸光度 转换为待测参数的浓度值,并通过液晶显示屏显示。
(1)将取回的进水样、出水样摇匀。
(2)取1支比色管加入25mL进水样,然后用蒸馏水加至刻度线(因进水SS较大,若不稀释可能会超过悬浮物测试仪的最大限度,使结果不准。当然进水取样量不固定,若进水太脏就取10mL,用蒸馏水加至刻度线)。
(3)开启悬浮物测试仪,向类似于比色皿的小盒内加入蒸馏水至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,若不为零则按清零键,将仪器清零(测一次即可)。
(4)测进水SS:将比色管内的进水样倒入小盒内润洗3次,然后将进水样加至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,测三次,求取平均值。
(5)测出水SS:将出水样摇匀,润洗三次小盒…(方法同上)
进水SS的结果为:稀释倍数*测进水样读数 出水SS的结果直接为测出水样仪器读数。
4、总磷(TP)的测定
在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常集成磷钼蓝。
本方法最低检出浓度为0.01mg/L(吸光度A=0.01时所对应的浓度);测定上限为0.6mg/L。可适用于测定地面水、生活污水及日化、磷肥、机加工金属表面磷化处理、农药、钢铁、焦化等行业的工业废水中的正磷酸盐分析。
分光光度计
(1)1+1 硫酸。
(2)10%(m/V)抗坏血酸溶液:溶解10g抗坏血酸于水中,并稀释至100ml。该溶液储存在棕色玻璃瓶中,在冷处可稳定几周。如颜色变黄,则弃去重配。
(3)钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100ml水中。溶解0。35g酒石酸锑氧钾[K(SbO)C4H4O6·1/2H2O]于100ml水中。在不断的搅拌下,将钼酸铵溶液徐徐加到300ml(1+1)硫酸中,加酒石酸锑钾溶液并且混合均匀。试剂贮存在棕色的玻璃瓶中于冷处保存。至少稳定2个月。
(4)浊度-色度补偿液:混合两份体积的(1+1)硫酸和一份体积的10%(m/V)抗坏血酸溶液。此溶液当天配制。
(5)磷酸盐贮备溶液:将磷酸二氢钾(KH2PO4)于110°C干燥2h,在干燥器中放冷。称取0.217g溶于水,移入1000ml容量瓶中。加(1+1)硫酸5ml,用水稀释至标线。此溶液每毫升50.0ug磷。
(6)磷酸盐标准溶液:吸取10.00ml磷酸盐贮备液于250ml容量瓶中,用水稀释至标线。此溶液每毫升含2.00ug磷。临用时现配。
(1)将取回的进水样、出水样摇匀(生化池上点的水样要摇匀放置一段时间取上清液)。
(2)取3支具塞刻度管,第一支具塞刻度管加蒸馏水加至上部刻度线;第二支具塞刻度管加5mL进水样,然后用蒸馏水加至上部刻度线;第三支具塞刻度管
的盐酸浸泡2h,或用不含磷酸盐的洗涤剂刷洗。
(3)比色皿用后应可以稀硝酸或铬酸洗液浸泡片刻,以除去吸附的钼蓝呈色物。
5、总氮(TN)的测定
在60℃以上的水溶液中过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O→2KHSO4+1/2O2 KHSO4→K++HSO4_ HSO4→H++SO42-
加入氢氧化钠用以中和氢离子,使过硫酸钾分解完全。在120℃-124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。而后用紫外分光光度法分别于波长220nm与275nm处测定其吸光度,按下式计算硝酸盐氮的吸光度: A=A220-2A275 从而计算总氮的含量。其摩尔吸光系数为1.47×103
(1)水样中含有六价铬离子及三价铁离子时,可加入5%盐酸羟胺溶液1-2ml,以消除其对测定的影响。
(2)碘离子及溴离子对测定有干扰。碘离子含量相对于总氮含量的0.2倍时无干扰。溴离子含量相对于总氮含量的3.4倍时无干扰。
(3)碳酸盐及碳酸氢盐对测定的影响,在加入一定量的盐酸后可消除。
(4)硫酸盐及氯化物对测定无影响。
该方法主要适用于湖泊,水库,江河水中总氮的测定。方法检测下限为0.05mg/L;测定上限为4mg/L。
(1)紫外分光光度计。
(2)压力蒸汽消毒器或家用压力锅。
(3)具塞玻璃磨口比色管。
(1)无氨水,每升水中加入0.1ml浓硫酸,蒸馏。收集流出液于玻璃容器中。
(2)20%(m/V)氢氧化钠:称取20g氢氧化钠,溶于无氨水中,稀释至100ml。
(3)碱性过硫酸钾溶液:称取40g过硫酸钾,15g氢氧化钠,溶于无氨水中,稀释至1000ml,溶液存放在聚乙烯瓶内,可储存一周。
(4)1+9盐酸。
(5)硝酸钾标准溶液:a、标准贮备液:称取0.7218g经105-110℃烘干4h的硝酸钾溶于无氨水中,移至1000ml容量瓶中定容。此溶液每毫升含100毫克硝酸盐氮。加入2ml三氯甲烷为保护剂,至少可稳定6个月。b、硝酸钾标准使用液:将贮备液用无氨水稀释10倍而得。此溶液每毫升含10毫克硝酸盐氮。
(1)将取回的进水样、出水样摇匀。
(2)取3个25mL的比色管(注意不是大的比色管)。第一支比色管加蒸馏水加至下部刻度线;第二支比色管加1mL进水样,然后用蒸馏水加至下部刻度线;第三支比色管加2mL出水样,然后用蒸馏水加至下部刻度线。
(3)分别向3个比色管加5mL碱式过硫酸钾
(4)将3个比色管放入到塑料烧杯内,然后放到高压锅内加热。进行消解。
(5)加热完毕,拆开纱布,自然冷却。
(6)冷却后,再向3个比色管分别加1mL1+9的盐酸。
(7)向3个比色管分别加蒸馏水至上部刻度线,摇匀。
(8)使用两种波长,用分光光度计测。首先用波长275nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数;再用波长220nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数。
(9)计算结果。
6、氨氮(NH3-N)的测定
典化汞和典化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在教宽的波长范围不内具强烈吸收。通常测量用波长在410—425nm范围。
水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时加硫酸水样酸化至PH<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氨而遭致污染。
脂肪胺、芳香胺、醛类、丙酮、醇类和有机氮胺类等有机化合物,以及铁,锰,镁和硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可以酸性条件下加热以除去对金属离子的干扰,还可以加入适量的掩蔽剂加以消除。
本法最低检出浓度为0.025mg/l(光度法),测定上限为2mg/l.采用目视比色法,最低检出浓度为0.02mg/l。水样作适当、预处理后,本法可适用于地面水,地下水、工业废水和生活污水。
(1)分光光度计。
(2)PH计
配制试剂用水均应为无氨水。
(1)纳氏试剂 ,可选择下列一种方法制备 :
1、称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,该为滴加饱和的二氧化汞溶液,并充分搅拌,出现朱红色沉淀不在溶解时,停止加氯化汞溶液。
另称取60g氢氧化钾溶于水中,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静至过夜,将上清液移入聚乙烯瓶中,密塞保存。
2、称取16 g氢氧化钠,溶于50ml水中,充分冷却至室温。
另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。
(2)酸钾钠溶液
称取50g酒石酸钾钠(KNaC4H4O6.4H2O)溶于100ml水中,加热蒸沸以除去氨,冷却,定溶至100ml。
(3)铵标准贮备溶液
称取3.819g经100摄氏度干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。
(4)铵标准使用溶液
移取5.00ml胺标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。
从校准曲线上查得氨氮含量(mg)
氨氮(N,mg/l)=m/v*1000
式中,m——由校准查得氨氮量(mg),V——水样体积(ml)。
(1)钠氏试剂碘化汞与碘化钾的比例,对显色反映的灵敏度有较大影响。静止后生成的沉淀应除去。
(2)滤纸中长含痕量铵盐,使用时注意用无氨水洗涤。所有玻璃器皿应避免实验室空气中氨的沾污。
(1)将取回的进水样、出水样摇匀。
(2)将进水样、出水样分别倒入到100mL的烧杯内。
(3)向两个烧杯内分别加入1mL 10%的硫酸锌和5滴氢氧化钠,用2个玻璃棒分别搅拌。
(4)静置3分钟后开始过滤。
(5)将静置后的水样倒入到滤斗内,过滤部分后将底下烧杯内的滤液倒掉,然后再用此烧杯接漏斗内剩余的水样,直到过滤完毕再次将底下烧杯内的滤液倒掉。(换言之用一漏斗的滤液洗两次烧杯)
(6)分别过滤完烧杯内的剩余水样。
(7) 取3个比色管。第一支比色管加蒸馏水加至刻度线;第二支比色管加3--5mL进水样滤液,然后用蒸馏水加至刻度线;第三支比色管加2mL出水样滤液,然后用蒸馏水加至刻度线。(所取进、出水样滤液的量不固定)
(8)分别向3个比色管分别加1mL酒石酸钾钠和1.5mL纳氏试剂。
(9)分别摇匀,计时10分钟。用分光光度计测,用波长420nm,20mm的比色皿。记数。
(10)计算结果。
7、硝酸盐氮(NO3-N)的测定
水样在碱性介质中,硝酸盐可被还原剂(戴氏合金)在加热情况下定量被还原为氨,经蒸馏后被吸收于硼酸溶液中,用纳氏试剂光度法或酸滴定法测定。
亚硝酸盐在此条件下,亦被还原为氨,需预先除去。水样中的氨及氨盐亦可在加入戴氏合金以前,预蒸馏使除去。
本法尤适用于严重污染的水样中硝酸盐氮的测定,同时,亦可作为水样中亚硝酸盐氮的测定(由水样在碱性预蒸馏去除氨和铵盐后,测定亚硝酸盐总量,减去单独测定的硝酸盐量后,即为亚硝酸盐量)。
带氮球的定氮蒸馏装置。
(1)氨基磺酸溶液:称取1g氨基磺酸(HOSO2NH2)溶于水,稀释至100ml。
(2)1+1盐酸
(3)氢氧化纳溶液:称取300g氢氧化纳溶解于水,稀释至1000ml。
(4)戴氏合金(Cu50:Zn5:Al45)粉剂。
(5)硼酸溶液:称取20g硼酸(H3BO3)溶于水,稀释至1000ml.。
(1)将取回的3号点和回流点的样摇匀后放置澄清一段时间。
(2)取3个比色管。第一支比色管加蒸馏水加至刻度线;第二支比色管加3mL3号点样上清液,然后用蒸馏水加至刻度线;第三支比色管加5mL回流点么上清液,然后用蒸馏水加至刻度线。
(3)取3个蒸发皿,降3个比色管中的液体对应倒入蒸发皿中。
(4)向3个蒸发皿中分别加入0.1mol/L的氢氧化钠调节PH至8。(使用精密PH试纸,范围为5.5—9.0之间的。每个约需氢氧化钠20滴左右)
(5)开启水浴锅,将蒸发皿放到水浴锅上,温度设定为90℃,直至蒸干为止。(约需2小时)
(6)蒸干后,取下蒸发皿冷却。
(7)冷却后分别向3个蒸发皿中加1mL酚二磺酸,用玻璃棒研磨,使试剂与蒸发皿中的残渣充分接触,静置片刻后,再研磨一次。放置10分钟后,分别加入约10mL的蒸馏水。
(8)分别向蒸发皿中边搅拌边加入3--4mL氨水,然后将其移到对应的比色管中。分别加蒸馏水至刻度线。
(9)分别摇匀,用分光光度计测,用波长410nm,10mm的比色皿(普通玻璃的、稍新的)。并记数。
(10)计算结果。
8、溶解氧(DO)的测定
溶解在水中的分子态氧称为溶解氧。天然水中的溶解氧含量取决于水中与大气中氧的平衡。
一般采用采用碘量法测溶解氧
水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀,加酸后,氢氧化物沉淀溶解并与碘离子反应释放出游离碘。以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,可计算溶解氧的含量。
(1)用广口瓶取回的9号点的样,静置十几分钟。(注意用的是广口瓶,并注意取样方法)
(2)用玻璃弯管插入广口瓶样内,用虹吸法向溶解氧瓶中吸入上清液,先少吸一些,润洗溶解氧瓶3次,最后再吸入上清液注满溶解氧瓶。
(3)向满的溶解氧瓶中加入1mL硫酸锰和2mL碱性碘化钾。(注意加的时候的注意事项,从中部加入)
(4)盖上溶解氧瓶的瓶盖,上下摇匀,隔几分钟再摇,摇匀三次。
(5)再向溶解氧瓶中加入2mL浓硫酸,摇匀。放在暗处静置五分钟。
(6)向碱式滴定管(带橡胶管、玻璃珠的。注意酸式、碱式滴定管的区别)倒入硫代硫酸钠至刻度线,准备滴定。
(7)静置5分钟后,取出放在暗处的溶解氧瓶,将溶解氧瓶中的液体倒入到100mL的塑料量筒内,润洗3次。最后倒至量筒的100mL刻度线。
(8)将量筒内的液体倒入到锥形瓶中。
(9)用硫代硫酸钠向锥形瓶中滴定至无色,然后加入一滴管淀粉指示剂,再用硫代硫酸钠滴定,直至褪色,记录读数。
(10)计算结果。
溶解氧(mg/L)=M*V*8*1000/100
M为硫代硫酸钠溶液浓度(mol/L)
V为滴定时消耗硫代硫酸钠溶液的体积(mL)
9、总碱度
(1)将取回的进水样、出水样摇匀。
(2)将进水样过滤(若进水较干净,则不需过滤),用100mL的量筒取滤液100mL到500mL的三角烧瓶中。用100mL的量筒取摇匀后的出水样100mL到另一个500mL的三角烧瓶中。
(3)分别向两个三角烧瓶中加3滴甲基红-亚甲基兰指示剂,呈浅绿色。
(4)向碱式滴定管(带橡胶管、玻璃珠的,50mL的。而溶解氧测定中用到的碱式滴定管是25mL的,注意区分)倒入0.01mol/L的氢离子标液至刻度线。
(5)分别向两个三角烧瓶中用氢离子标液滴定呈现淡紫色,记录所用的体积读数。(切记滴定完一个之后读数,并加满滴定另一个。进水样约需四十多毫升,出水样约需一十多毫升)
(6)计算结果。用氢离子标液的用量*5即为体积。
10、污泥沉降比(SV30)的测定
(1)取一个100mL的量筒。
(2)将取回的氧化沟9号点的样摇匀,倒入量筒至上部刻度线处。
(3)开始计时30分钟后,读出分界面的刻度读数并记录。
11、污泥体积指数(SVI)的测定
SVI的测定是用污泥沉降比(SV30)除以污泥浓度(MLSS)即为结果。但要注意换算单位。SVI的单位为mL/g。
12、污泥浓度(MLSS)的测定
(1)将取回的9号点的样和回流点的样摇匀。
(2)将9号点的样和回流点的样各取100mL到量筒中。(9号点的样用测污泥沉降比所取得即可)
(3)用旋片式真空泵分别过滤量筒内9号点的样和回流点的样。(注意滤纸的选用,所用的滤纸是提前称好的滤纸。若当天9号点的样要测MLVSS,过滤9号点样就要选用定量滤纸,反正选用定性滤纸。另外注意定量滤纸与定性滤纸的的区别)
(4)取出过滤的滤纸泥样放到电热鼓风干燥箱,干燥箱温度升至105℃开始计时干燥2小时。
(5)取出干燥后的滤纸泥样放到玻璃干燥器内冷却半小时。
(6)冷却后用精密电子天平称量并记数。
(7)计算结果。污泥浓度(mg/L)=(天平读数-滤纸重量)*10000
13、挥发性有机物质(MLVSS)的测定
(1)将9号点的滤纸泥样用精密电子天平称量后,将滤纸泥样放入到小的瓷坩埚内。
(2)开启箱式电阻炉,温度调至620℃,将小瓷坩埚放入到箱式电阻炉内约2小时。
(3)两小时后,关闭箱式电阻炉,冷却3小时后将箱式电阻炉的门开一点小缝,再次冷却半小时左右,确保瓷坩埚温度不超过100℃。
(4)取出瓷坩埚放到玻璃干燥器内再次冷却半小时左右,放到精密电子天平上进行称量,并记录读数。
(5)计算结果。
挥发性有机物质(mg/L)=(滤纸泥样重+小坩埚重-天平读数)*10000。
3月22日是世界水日,很多地方都组织了丰富多彩的宣传活动,号召市民节约用水。山东省滨州市在3月22日开展第二届限水体验日活动,市主城区范围内的3家供水公司对其供水范围内用水用户实施停水,共计11个小时。
我国是一个缺水大国,人均水资源占有量为2200立方米,仅相当于世界人均水资源占有量的1/4。然而,目前,我国居民的节约用水意识仍较弱,水资源浪费现象严重,进一步加剧了城市缺水状况。
开展节约用水的宣传教育活动很有必要,但是,滨州市全城停水11个小时,直接给居民生活带来了不便。一方面,居民需要提前准备好生活用水;另一方面,这种方式可能不仅没有形成节约,反而用不了的水被倒掉了,所以,对居民节水意识的养成并没有太大作用。
为增强全社会的水安全意识,提高居民的节水、护水意识,笔者认为,应做好以下几方面工作。
一是在日常生活中做到节约用水,养成节约用水的生活习惯。对节约用水、保护水资源的宣传教育不能仅限于世界水日这一天,而是要强化平时的保护水资源教育,要深入社区、企事业单位、学校等,让节水、护水成为一种习惯。
二是用好价格杠杆的调控功能,采用经济手段倒逼节约用水习惯的养成。各地应推进居民生活用水价格改革,全面实行城乡居民生活用水阶梯水价,用谁浪费谁付费来倒逼居民节约水资源。
三是完善节水机制,推动工业节水、农业节水。工业用水和农业用水的消耗量较大,应积极研究开发工业节水和农业节水的新技术,建立完善相关节水机制。比如在农业用水方面,既要采用收费制,也要普及滴灌技术等。
为了进一步促进科宇文化建设,丰富职工业余文化生活,激发职工的凝聚力和战斗力。科宇组织开展了“庆三八”趣味运动会,共同庆祝第108个“三•八”国际妇女节。
科宇水处理总经理总经理赵林,在开幕式上,重点为员工明确了2018年的工作目标和奋斗目标,鼓励员工奋力拼搏、努力工作;并致辞本活动,对工作在各岗位上的女职工致以真挚的节日问候,并希望各参赛队员发扬友谊第一、比赛第二的风格,赛出成绩、赛出团结,赛出职工良好的精神风貌。
活动现场掌声、笑声、呐喊声此起彼伏、气氛热烈,在紧张激烈的比赛中,大家团结协作、互帮互助,体现了良好的团队精神。